Énoncés

Exercice 1 $\label{eq:completer} \mbox{Completer le tableau avec les symboles} \in \mbox{et} \not\in.$

	IN	Z	D	Q	IR
0					
- 57					
$\sqrt{2}$					
2,1					
$\sqrt{16}$					
$-\frac{19}{10}$					
π					
10 3					

Exercice 2

- 1. Justifier que $\frac{3}{25}$ est un nombre décimal.
- 2. Justifier que la différence entre deux entiers naturels n'est pas forcément un entier naturel.
- 3. Le quotient de deux nombres décimaux est-il forcément un nombre décimal ? Justifier.
- 4. Un nombre décimal a-t-il forcément une virgule ? Justifier.
- **5.** Existe-t-il des nombres sans virgule n'appartenant pas à \mathbb{Z} ? Justifier.
- 6. Le produit de deux nombres décimaux est-il forcément un nombre décimal ? Justifier.

éducmat

Corrigés

Exercice 1

	IN	Z	D	Q	IR
0	€	€	€	€	€
- 57	∉	€	€	€	€
$\sqrt{2}$	∉	∉	∉	∉	€
2,1	∉	∉	€	€	€
$\sqrt{16}$	€	€	€	€	€
$-\frac{19}{10}$	∉	∉	€	€	€
π	∉	∉	∉	∉	€
10 3	∉	∉	∉	€	€

Exercice 2

- 1. Comme $\frac{3}{25} = \frac{12}{100}$ alors $\frac{3}{25}$ est un nombre décimal.
- 2. On a 1-2=-1 donc la différence entre deux entiers naturels n'est pas forcément un entier naturel.
- 3. Non. Par exemple, le quotient des nombres décimaux 7 et 3 n'est pas un nombre décimal.
- 4. Non. Le nombre 3 est décimal et entier.
- **5.** Non. L'ensemble des entiers relatifs \mathbb{Z} pourrait tout simplement s'appeler l'ensemble des entiers.
- 6. Oui. Soient deux nombres décimaux. Ils peuvent s'écrire sous la forme $\frac{a}{10^k}$ et $\frac{a'}{10^{k'}}$. Leur produit est $\frac{a}{10^k} \times \frac{a'}{10^{k'}} = \frac{a a'}{10^{k+k'}}$ ce qui est aussi l'écriture d'un nombre décimal.